勾三股四弦五,是什么

2024-04-15 07:22

1. 勾三股四弦五,是什么

“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形(3角度数为36.8698976 °,53.1301024°,90°)。
中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。
勾三股四弦五直角三角形的内切圆直径为2。故有“勾三股四弦五径二”之说。

外国的勾股定理
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。
公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。
公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。
1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。
1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。

勾三股四弦五,是什么

2. 勾三股四弦五,是什么

【意思】
勾三的平方九,加股四的平方十六,等于弦五的平方二十五,指直角三角形的两条直角边的平方和等于斜边的平方。
【历史】
1、《周髀算经》中记录了周朝(公元前十一世纪)数学家商高提出的“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
2、公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。
3、清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。
【解释】

中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

3. 为什么叫勾三股四弦五

问题一:为什么叫勾三股四弦五啊  “勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国古算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。即:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。 
  
   问题二:勾三股四玄五分别是什么意思  勾三股四玄五是在不等边直角三角形里适用的,较短的一个直角边称之为勾,另一个直角边称之为股,斜边称之为玄,345是一组勾股数,3的平方加4的平方等于5的平方,每一个直角三角形都有这样的特性,两直角边平方之和等于斜边的平方,这就是勾股定理 
  
   问题三:勾3股4弦5是什么意思?  勾股定理,直角边是3和4,斜边是5 
  
   问题四:为什么勾三股四玄就一定是五?  勾三股四代表的是两条直角边的边长为3和4 
  因为3^2+4^2=25 开根号就等于5 
  也就是3^2+4^2=5^2 
  
   问题五:勾三股四弦五是谁发明的谢谢?  “勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出 
  
   问题六:勾三股四弦必五的发现者是谁  商高 
  西周初数学家。 
  商高 ,西周初数学家。约与周公旦同时期人。在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五。早于毕达哥拉斯定理五百到六百年。 
  数学成就据《周髀算经》记载,主要有三方面:勾股定理、测量术和分数运算。《周髀算经》中记载了这样一件事――一次周公问商高:古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?商高回答说:数是根据圆和方的道理得来的,圆从方来,方又从矩来。矩是根据乘、除计算出来的。这里的“矩”原是指包含直角的作图工具。这说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形。《周髀算经》并有“勾股各自乘,并而开方除之”的记载,说明当时已普遍使用了勾股定理。勾股定理是中国数学家的独立发明,在中国早有记载。《周髀算经》还记载了矩的用途:“周公曰:大哉言数!请问用矩之道。商高曰:平矩以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方。”据此可知,当时善于用矩的商高已知道用相似关系的测量术。

为什么叫勾三股四弦五

4. 勾3股4弦5是什么意思?

“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形,(3角度数为36.8698976 °,53.1301024°,90°。)
中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。
在西方,也有“勾三股四弦五”的定理,《周髀算经》比西方早了五百多年,这一定理在西方称为“毕达哥拉斯定理”。
勾三股四弦五直角三角形的内切圆直径为2。故有 “勾三股四弦五径二”之说。
扩展资料:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)
三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。
证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
因此四边形BDLK=BAGF=AB²。
同理可证,四边形CKLE=ACIH=AC²。
把这两个结果相加,AB²+AC²=BD×BK+KL×KC
由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC
由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。
此证明是于欧几里得《几何原本》一书第1.47节所提出的。

5. “勾三股四弦五”是什么?


“勾三股四弦五”是什么?

6. 勾3股4弦5是什么意思

 勾3股4弦5是著名的勾股定理。当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。
     
   什么是勾3股4弦5   在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特叫做勾股定理或勾股弦定理,又称毕达拉斯定理或毕氏定理。是一个基本的几何定理,传统上认为是由古希腊的毕达拉斯所证明。
   在髀算经记载了勾股定理的一个特例,相传是在商由商高发现,故又有称之为商高定理;三国时的爽对髀算经内的勾股定理作出了详细注释,作为一个证明。
   我国古把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
   怎样求勾3股4弦5三角形的高   这是直角三角形3和4两边是直角边,可以互为底边和高至于一5为底边时的高可以根据面积求s=3*4/2=5*h/2h=2.4。
   用面积求:3*4/5=2.4就是斜边的高了,因为“勾3股4弦5三角形”是直角三角形!其他两边的高就是其对应的边。

7. 勾3股4弦5是什么意思?

“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形,(3角度数为36.8698976°,53.1301024°,90°。)
中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。
在西方,也有“勾三股四弦五”的定理,《周髀算经》比西方早了五百多年,这一定理在西方称为“毕达哥拉斯定理”。
勾三股四弦五直角三角形的内切圆直径为2。故有“勾三股四弦五径二”之说。
扩展资料:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)
三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。
证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
因此四边形BDLK=BAGF=AB²。
同理可证,四边形CKLE=ACIH=AC²。
把这两个结果相加,AB²+AC²=BD×BK+KL×KC
由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC
由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。
此证明是于欧几里得《几何原本》一书第1.47节所提出的。

勾3股4弦5是什么意思?

8. 勾三股四弦五到底是什么意思?勾三股四弦五公式